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Abstract
For the long-distance communication and manufacturing problems in optical
fibers, the propagation of subpicosecond or femtosecond optical pulses can
be governed by the variable-coefficient nonlinear Schrödinger equation with
higher order effects, such as the third-order dispersion, self-steepening and
self-frequency shift. In this paper, we firstly determine the general conditions
for this equation to be integrable by employing the Painlevé analysis. Based
on the obtained 3 × 3 Lax pair, we construct the Darboux transformation
for such a model under the corresponding constraints, and then derive
the nth-iterated potential transformation formula by the iterative process of
Darboux transformation. Through the one- and two-soliton-like solutions, we
graphically discuss the features of femtosecond solitons in inhomogeneous
optical fibers.

PACS numbers: 05.45.Yv, 02.30.Ik, 42.81.Dp, 42.65.Tg, 02.70.Wz

1. Introduction

The nonlinear Schrödinger (NLS) equation, as an important physical model, describes the
dynamics of optical soliton propagation in nonlinear optical fibers [1–11]. Since the optical
soliton in a dielectric fiber was theoretically and experimentally discovered [12], it has been
regarded as the natural data bits and as an important alternative to the next generation of
ultrafast optical telecommunication systems [13–18]. In realistic optical fibers, due to the
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long-distance communication and manufacturing problems, the propagation of subpicosecond
or femtosecond optical pulses is governed by the variable-coefficient higher order NLS (HNLS)
equations [4–9, 19, 20], which include various higher order effects influenced by the spatial
variations of the fiber parameters such as the third-order dispersion (TOD), self-steepening
and self-frequency shift [1–5]. Furthermore, many properties of these HNLS models have
been analyzed by some authors from different points of view [1–6].

In reality, the fundamental soliton propagation cannot exist in standard fiber (which is of
the order of 0.2 dB km−1 at carrier wavelength 1.55 µm), but the stable pulse propagation
over a considerable distance can still be obtained by appropriate combination of dispersion
and optical amplification [21]. The variable-coefficient NLS models have attracted a great
deal of interest in dispersion-managed optical fibers [4–8, 22, 23]. For the subpicosecond or
femtosecond optical soliton control, the above higher order effects like TOD, self-steepening
and self-frequency shift should be taken into account. In view of the inhomogeneous fibers, the
problem of femtosecond soliton control can be governed by the generalized variable-coefficient
HNLS equation [4–6]

i uz + a(z) utt + b(z) |u|2 u + i c(z) uttt + i d(z) (|u|2u)t + i e(z) u (|u|2)t
+ i f (z) ut + [g(z) + i h(z)] u = 0, (1)

where u(z, t) is the complex envelope of the electrical field in the comoving frame, z and t,
respectively, represent the normalized propagation distance along the fiber and retarded time,
while all the variable coefficients are real analytic functions. a(z) and c(z) denote the group
velocity dispersion (GVD) and TOD, respectively. b(z) accounts for the self-phase modulation
(SPM), while d(z) is the self-steepening (also called the Kerr dispersion) and e(z) is related to
the delayed nonlinear response effects. The term proportional to f (z) results from the group
velocity and h(z) represents the amplification or absorption coefficient. Equation (1) can also
be extensively used to describe the telecommunication and ultrafast signal-routing systems in
the weakly dispersive and nonlinear dielectrics with distributed parameters [4–6].

When c(z) = d(z) = e(z) = 0, equation (1) degenerates to [9–11]

i uz + a(z) utt + b(z) |u|2 u + i f (z) ut + [g(z) + i h(z)] u = 0, (2)

in which the optical soliton can be formed based on the exact balance between the GVD and
SPM effects. Some analytic soliton-like solutions for equation (2) have been obtained and the
relevant properties have also been discussed in detail [9–11]. If c(z) = e(z) = 0, equation (1)
reduces to the variable-coefficient derivative NLS equation [24], which describes the optical
soliton propagation in the presence of Kerr dispersion. However, to model the effects of pulse
broadening in some particular regions as the frequency region, one should consider the TOD
effect and ignore the GVD effect [1]. In this case, the asymmetrical broadening between these
higher order effects can balance themselves to achieve the soliton pulse propagation in fiber
systems [1–6]. When f (z) = 0 and/or g(z) = 0, the analytic multi-soliton-like solutions
of equation (1) have been given under a special condition for this equation to be Painlevé
integrable [4–6]. Nevertheless, as shown in [25–27], there may exist another constraint for
such a variable-coefficient nonlinear evolution equation (NLEE) to admit soliton solutions.

With symbolic computation [27–30], in section 2, we will firstly determine the general
conditions for equation (1) to be integrable by employing the Painlevé analysis. It will be found
that there exist two kinds of constraints for equation (1) to possess the soliton solutions, one
of which is consistent with the condition presented in [5, 6]. Thus, we will devote ourselves
to studying equation (1) under another set of constraints and then generalize the 2 × 2 Lax
pair to the 3 × 3 linear eigenvalue problem. In section 3, we will construct the Darboux
transformation based on the obtained 3 × 3 Lax pair, and derive the nth-iterated potential
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transformation formula by iterating the Darboux transformation n times. Section 4 will
present the graphical discussions about the features of solitons propagating in inhomogeneous
optical fibers through the one- and two-soliton-like solutions of equation (1). Our conclusions
will be addressed in section 5.

2. Painlevé analysis and Lax pair for equation (1) with symbolic computation

In this section, to determine the necessary conditions for equation (1) to be completely
integrable, we will employ the Weiss–Tabor–Carnevale (WTC) method [31] and the simplified
Kruskal ansatz [32] to carry out the Painlevé analysis.

According to the WTC method, if the solutions of a given partial differential equation
(PDE) are ‘single-valued’ about the movable singularity manifolds, then this PDE has the
Painlevé property. In order to carry out the Painlevé analysis, we introduce v(z, t) = u∗(z, t),
where * represents the complex conjugate. Then, equation (1) turns out to be the following
set of equations:

i uz + a(z) utt + b(z) u2 v + i c(z) uttt + i d(z) (u2v)t + i e(z) u (uv)t

+ i f (z) ut + [g(z) + i h(z)] u = 0, (3)

i vz − a(z) vtt − b(z) v2u + i c(z) vttt + i d(z) (v2u)t + i e(z) v (uv)t

+ i f (z) vt − [g(z) − i h(z)] v = 0. (4)

The generalized Laurent series expansions of u and v are of the form

u = φp

∞∑
j=0

uj (z, t)φ
j , (5)

v = φq

∞∑
j=0

vj (z, t)φ
j , (6)

where p and q are two negative integers, uj , vj and φ(z, t) are all analytic functions of z and
t in a neighborhood of the noncharacteristic singular manifold φ(z, t) = t + ψ(z) = 0, with
ψ(z) as an arbitrary analytic function of z. Through the leading order analysis, we obtain
p = q = −1 and u0v0 = −6c(z)/[3d(z) + 2e(z)]. With symbolic computation, it is found
that there are two cases for equations (3) and (4) to pass the Painlevé test as follows: (i)
d(z) = −e(z); (ii) d(z) = −2 e(z).

For case (i), the resonances occur at j = −1, 0, 1, 3, 4, 5, of which j = −1 corresponds
to the arbitrariness of the singular manifold and j = 0 shows that either u0 or v0 is arbitrary,
while the compatibility conditions at j = 1, 3, 4, 5 are satisfied identically, if the variable
coefficients obey the following constraints:

a(z) = −3
b(z)c(z)

e(z)
, e(z) = αc(z) e2

∫
h(z) dz, (7)

where α is an arbitrary constant, which are identical with the conditions given in [4–6]. In
this case, equation (1) becomes the Hirota equation with variable coefficients and has been
investigated by some authors [6].

For case (ii), the resonances occur at j = −1, 0, 2, 3, 4, 4, of which j = −1 corresponds
to the arbitrariness of the singular manifold and j = 0 shows that either u0 or v0 is arbitrary.
With the aid of symbolic computation, we can also prove that the compatibility conditions
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at j = 2, 3, 4, 4 are satisfied automatically, if the variable coefficients obey the following
constraints:

a(z) = −3σc(z)

2δ
, e(z) = δb(z)

σ
= δ e2

∫
h(z) dzc(z), (8)

where δ �= 0 and σ �= 0 are a couple of arbitrary constants. When f (z) = g(z) = h(z) = 0
and other variable coefficients are all constants, equation (1) with constraints (8) reduces to
the constant-coefficient HNLS equation [33].

Therefore, under constraints (7) or (8), we can say that equation (1) possesses the Painlevé
property, and either of these two constraints has nothing to do with the variable coefficients
f (z) and g(z). It is noted that the special constraint conditions shown in [4–6, 8] are identical
with constraints (7), under which some properties such as the multi-soliton solutions have
been discussed by the Darboux transformation and Hirota method. To our knowledge, the
investigation of equation (1) under constraints (8) has not been widespread.

In soliton theory, the Lax pair is of fundamental importance in that it not only gives
a scheme to solve the initial problem of a given NLEE through the method of inverse
scattering, but also plays a vital role in studying the integrable properties of NLEEs such as the
Hamiltonian structures, conservation laws, symmetry classes and Darboux transformations
[30, 34–40]. In the following research, we will stay with the second set of constraints and
employ the Ablowitz–Kaup–Newell–Segur (AKNS) procedure [36] to construct the Lax pair
for equation (1). It is noted that the key for constructing a Lax pair for a given NLEE
through the AKNS method is to choose an appropriate linear eigenvalue problem [30, 35–37].
According to the constraints on those variable coefficients, we generalize the 2 × 2 Lax pair
for equation (1) under constraints (8) to the 3 × 3 linear eigenvalue problem. Without loss
of generality, we assume that σ = 1 and δ = −1. Thus, the linear eigenvalue problem for
equation (1) under constraints (8) can be expressed as follows:

�t = U� = (λU0 + U1)�, �z = V� = (λ3V0 + λ2V1 + λV2 + V3)�, (9)

where � = (φ1, φ2, φ3)
T , T denotes the transpose of the matrix and λ is a spectral parameter,

while the matrices U0, U1, V0, V1, V2 and V3 are presented in the forms

U0 =

−i 0 0

0 i 0
0 0 i


 , U1 =


 0 ku k∗u∗

−k∗u∗ 0 0
−ku 0 0


 , V0 = 4c(z)U0, V1 = 4c(z)U1,

(10)

V2 =




A1+ 2i
3 c(z) e2

∫
h(z)dz|u|2 kA2 −k∗A∗

2

−k∗A∗
2 A∗

1 −k∗2A∗
3

kA2 k2A3 A∗
1


 , V3 =


 0 kA4 k∗A∗

4

−k∗A∗
4 A5 0

−kA4 0 A∗
5


 ,

(11)

with

k = 1√
3

e− i
4 {2t−∫

[c(z)−4g(z)+2f (z)]dz}+
∫

h(z) dz,

A1 = if (z) + ic(z)

(
3

4
+

2

3
e2

∫
h(z) dz|u|2

)
,

A2 = c(z) (u + 2 iut ) ,

A3 = −2 ic(z)u2,
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A4 = c(z)

[
−4

3
e2

∫
h(z) dz|u|2u − utt + iut − 1

2
u

]
− f (z)u,

A5 = 1

3
e2

∫
h(z) dzc(z)(u∗ut − uu∗

t − i|u|2).
With constraints (8), it is easy to prove that the compatibility condition Uz − Vt + [U, V] = 0
gives rise to equation (1).

In order to reveal the analytic soliton-like solutions for equation (1) under constraints (8),
we will employ the Darboux transformation method, which is an effective and computerizable
procedure and has been widely used to construct soliton-like solutions for a class of variable-
coefficient NLEEs [5–7]. The Darboux transformation can give rise to a general procedure to
recursively generate a series of analytic solutions including the multi-soliton solutions from an
initial solution [34–40]. It is shown that an obvious advantage of the Darboux transformation
lies in that the iterative algorithm is purely algebraic and very computerizable by virtue of
symbolic computation [34–40].

3. Darboux transformation with symbolic computation

In this section, on the basis of the 3 × 3 Lax pair and under constraints (8), we construct the
Darboux transformation for equation (1) as the following form [37]:

�′ = D� = (λI + S)�, (12)

where I is the 3 × 3 identity matrix, S is a nonsingular matrix and its entries sij (1 � i, j � 3)

are all parameters to be determined. It requires that �′ should also satisfy the linear eigenvalue
problem (9), i.e.,

�′
t = (λU ′

0 + U ′
1)�

′, �′
z = (λ3V ′

0 + λ2V ′
1 + λV ′

2 + V ′
3)�

′, (13)

where U ′
0, U

′
1, V

′
0, V

′
1, V

′
2 and V ′

3 have the same forms as U0, U1, V0, V1, V2 and V3 except that
u(z, t) is replaced by u1(z, t). It is noted that the key point in the Darboux transformation is
to make the linear eigenvalue problem (9) invariant under transformation (12). Thus, using
the knowledge of the Darboux transformation [37], we can obtain the following equations:

U ′
0 = U0, V ′

0 = V0, (14)

U ′
1 − U1 + U0S − SU0 = 0, (15)

U ′
1S − SU1 − St = 0, (16)

V ′
1 − V1 + V0S − SV0 = 0, (17)

V ′
2 − V2 + V ′

1S − SV1 = 0, (18)

V ′
3 − V3 + V ′

2S − SV2 = 0, (19)

V ′
3S − SV3 − Sz = 0, (20)

where equations (15) and (17) are actually identical and are satisfied if and only if

s12 = ik

2
(u − u1), (21)

s31 = s12, s21 = s13 = −s∗
12. (22)

Then, based on the investigation in [38–40], we can specially define

S = −H�H−1, (23)
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with

H =

φ11(λ1) φ21(λ1) φ21(λ1)

φ21(λ1) −φ11(λ1) 0
φ31(λ1) 0 −φ11(λ1)


 , � =


λ1 0 0

0 λ∗
1 0

0 0 λ∗
1


 , (24)

where Re(λ1) = 0, φ31(λ1) = φ21(λ1) and the first column of H is the real vector solution of
the Lax pair for the initial potential u(z, t) with λ = λ1. Owing to the strict constraints on the
entries of S matrix, we can find that the construction of the Darboux transformation for the
3 × 3 Lax pair is different from that in [5, 6, 40].

It is easy to verify that expressions (22) are satisfied automatically. From expression (21),
we can get the relation between the new potential u1(z, t) and old potential u(z, t) as below:

u1 = u +
4

k

Im (λ1) φ11(λ1)φ21(λ1)

φ2
11(λ1) + 2φ2

21(λ1)
. (25)

With the help of symbolic computation, the identity of equations (16) and (18)−(20) can
also be proved. Thus, we have constructed the Darboux transformation for equation (1)
under constraints (8) and obtained the relationship between two potentials. Analogous to this
procedure and iterating the Darboux transformation n times, we find the following nth-iterated
potential transformation formula:

un = u +
4

k

n∑
j=1

Im(λj )φ1,j (λj )φ2,j (λj )

Aj

, (26)

where

φm,j+1(λj+1) = (λj+1 − λ∗
j )φm,j (λj+1) − Bj

Aj

(λj − λ∗
j )φm,j (λj ), (27)

Aj = φ2
1,j (λj ) + 2φ2

2,j (λj ), (28)

Bj = φ1,j (λj )φ1,j (λj+1) + 2φ2,j (λj )φ2,j (λj+1), (29)

with m = 1, 2, 3, φ3,j (λj ) = φ2,j (λj ) and [φ1,j (λj ), φ2,j (λj ), φ3,j (λj )]T as the real vector
solution of the Lax pair corresponding to λj for potential uj−1(z, t) (j = 1, 2, 3, . . . , n).
Obviously, it can be seen that expression (26) provides us with a general procedure to generate
the multi-soliton-like solutions of equation (1).

4. Soliton-like solutions of equation (1) and applications in inhomogeneous fibers

From what have been obtained in section 3, we know that some soliton-like solutions for
equation (1) under constraints (8) can be derived by solving the linear eigenvalue problem
(9) with an initial potential and performing tedious but not complicated algebraic operations
[38–40]. Substituting the zero seed solution of equation (1) into system (9), we can get the
one-soliton-like solution from expression (25) as below:

u =
√

6µ1 e
1
4 i{2t−∫

[c(z)+2f (z)−4g(z)]dz+4i
∫

h(z)dz}

× sech

{
2µ1t − µ1

2

∫ [
16µ2

1c(z) + 3c(z) + 4f (z)
]

dz

}
, (30)

with λ1 = iµ1 and µ1 is an arbitrary real constant. It is shown in solution (30) that the
pulse width mainly depends on µ1 and the velocity of the femtosecond soliton is determined
by µ1

2

∫ [
16µ2

1c(z) + 3c(z) + 4f (z)
]

dz. The soliton amplitude |√6µ1 e− ∫
h(z) dz| is not only
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Figure 1. The evolution plot of an optical soliton given by solution (30) with µ1 = 0.2, c(z) = 0.02
and f (z) = g(z) = 0. (a) p = 0.015; (b) p = −0.015.
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Figure 2. The evolution plot of an optical soliton given by solution (30) with periodic influence
for µ1 = 0.2, c(z) = 0.02, f (z) = 2 sin(0.3z) and g(z) = 0. (a) p = 0.05; (b) p = −0.05.

dependent on the parameter µ1, but also related to the amplification or absorption coefficient
h(z). Therefore, through controlling the distributed parameters c(z), f (z) and h(z), we can
discuss some transmission properties of the femtosecond optical solitons in inhomogeneous
fiber systems.

When h(z) = 0, it can be seen that soliton amplitude is a constant. As studied in the
realistic optical systems, the amplification or absorption effect often cannot be neglected.
Based on the realization of the decreasing GVD in a fiber [22], we can choose the GVD,
nonlinearity and TOD parameters according to the results in [5, 7]. Then, the gain/loss
function is h(z) = −p/2, which represents the dispersion increasing (decreasing) fiber media
for p > 0 (p < 0). In figure 1, we can catch that the soliton amplitude exponentially grows
(attenuates) with the velocity v = e0.0075z (v = e−0.0075z) because of the influence of the
amplification (absorption) coefficient. In this case, the soliton velocity and pulse width are
both invariant in the soliton propagation along the fiber. Under the periodic influence of f (z),
figure 2 provides us with the evolution plot of Solution (30) for different signs of the parameter
p, from which we can clearly see that the soliton group velocity is ceaselessly changing along
the optical soliton propagation in the fiber.

With symbolic calculations, we can get the energy conservation law of equation (1) under
constraints (8) as below:

i
∂(e2

∫
h(z)dz|u|2)
∂z

+
∂
(
e2

∫
h(z)dz


)
∂t

= 0,

(31)


 = c(z)

[
i|u|2t t + 2 i e2

∫
h(z)dz|u|4 +

3

2
(utu

∗ − uu∗
t ) − 3iutu

∗
t

]
+ if (z)|u|2,

where e2
∫

h(z)dz|u|2 and e2
∫

h(z)dz
, respectively, represent the conserved density and flux with
a modification by multiplication of e2

∫
h(z)dz to counteract the attenuation/growth caused by

the linear fiber loss/gain. If h(z) = 0, the soliton-like solution is stable and its physical



13306 J Li et al

30

0

30

z
5

0
5t

0

3

6

|u|

0

30

z

40

0

40

z5
0

5
t

0

3

6

|u|

0

40

z

0

(a) (b)

−

− −

−

Figure 3. The evolution plot of the amplitudes of two femtosecond solitons via solution (33)
with µ2 = 0.1 and f (z) = g(z) = h(z) = 0. (a) µ1 = 0.7 and c(z) = 0.02; (b) µ1 = 1.3 and
c(z) = 0.02 + 0.005 sin(0.25z).
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Figure 4. (a) The evolution plot of the amplitudes of two femtosecond solitons via solution (33)
with µ1 = −0.999, µ2 = 0.1, c(z) = 0.02 and f (z) = g(z) = h(z) = 0; (b) the corresponding
contour plot.

quantity is conserved, while with the inclusion of the linear loss/gain term h(z) the soliton-
like solution is a stationary localized object, which can be used to explain the features of the
femtosecond optical soliton demonstrated in figures 1 and 2. Using the vanishing boundary
condition for solution (30), it is clear that

∂

∂z

∫ ∞

−∞
e2

∫
h(z) dz|u|2dt = 0, (32)

which indicates that the quantity
∫ ∞
−∞ |u|2 dt will exponentially decay/grow as the rate

e−2
∫

h(z)dz.
When n = 2, from expression (26), we can obtain the two-soliton-like solution for

equation (1) as follows:

u(z, t) =
√

2 e
1
4 i{2t−∫

[c(z)+2f (z)−4g(z)]dz+4i
∫

h(z)dz}

× [µ1 cosh (2ϕ2) − µ2 cosh (2ϕ1)]
(
µ2

1 − µ2
2

)
−2µ1µ2[sinh(2ϕ1) sinh(2ϕ2) + 1] + cosh(2ϕ1) cosh(2ϕ2)

(
µ2

1 + µ2
2

) , (33)

where λj = iµj and ϕj = µj t − µj

4

{∫ [
16µ2

j c(z) + 3c(z) + 4f (z)
]

dz
}
(j = 1, 2), from

which we can see that the pulse width of each soliton in the two-soliton-like solution is
determined by the imaginary part µj of spectral parameter λj . This is different from



Soliton-like solutions of a generalized variable-coefficient higher order nonlinear Schrödinger equation 13307

the previous result in [5, 6]. It is shown that the group velocity of each soliton is
related to µj

4

{∫ [
16µ2

j c(z) + 3c(z) + 4f (z)
]

dz
}
, which means that we can obtain abundant

femtosecond soliton structures through appropriately adjusting the distributed parameters
in the femtosecond soliton control system. When choosing the TOD coefficient c(z) with
different values, figure 3 shows the elastic interactions between two femtosecond optical
solitons.

In principle, it is impossible to obtain the separating evolution behavior of solitons for
equation (1) under constraints (8) because the real part of the spectral parameter is zero [5].
However, if the ratio |µ1|/|µ2| ∼ 1, an approximative separation between two solitons is likely
to occur. From figure 4, we can catch that the separation between two solitons approximately
keeps constant along two solitons propagating in the optical fiber, which can also be clearly
found in the corresponding contour plot.

5. Conclusions

In the real inhomogeneous fiber, the dynamics of the femtosecond soliton propagation are
governed by the variable-coefficient HNLS equations with higher order effects such as the
TOD, self-steepening and self-frequency shift. Different from previous papers, we firstly
present two kinds of constraints for equation (1) to be integrable. It is worth noting that
either of these two constraints has nothing to do with the variable coefficients f (z) and g(z).
For the former, i.e., constraints (7), some integrable properties of equation (1) have been
studied by some authors in recent literature. Due to the strict constraint conditions among
the parameters GVD, SPM, TOD, self-steepening and self-frequency shift, it has been shown
that the constructions of 3 × 3 Lax pair and Darboux transformation for equation (1) with
constraints (8) are distinct from those in previous papers. In this paper, we have devoted
ourselves to equation (1) with constraints (8), under which the multi-soliton-like solutions
for equation (1) have been obtained by employing the Darboux transformation based on the
3 × 3 Lax pair. Though controlling the GVD, TOD, SPM, self-steepening and amplification
(absorption) parameters in the femtosecond soliton control systems, we have discussed some
potential applications in the inhomogeneous optical fiber systems by the one- and two-soliton-
like solutions.
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